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Fin efficiency evaluation of plate-fin surfaces in compact heat exchangers is done based 
on the idealizations of one-dimensional analysis, uniform thickness thin fins, uniform fin 
thermal conductivity, uniform heat transfer coefficients, uniform temperature ambient, and 
no temperature depression at the fin base. A critical assessment of these idealizations is 
presented. Whenever possible, additional quantitative new results are obtained to account 

for some of these effects. Relaxation of these idealizations will lower the value of ideal 
one-dimensional fin efficiency, but will have a relatively small effect, if the fin efficiency 
is above about 80 percent, based on the assessment in the paper. Some specific design 
recommendations are made for the determination of the fin efficiency for plate-fin heat 
exchangers. 
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I n t r o d u c t i o n  

Fins are primarily used to increase the surface area and 
consequently to enhance the total heat transfer rate. Both 
conduction through the fin cross section and convection from 
the surface area take place. Hence, the surface temperature is 
generally lower than the base (prime surface) temperature if 
the fin convects heat to the fluid. This, in turn, reduces the 
temperature potential between the fin and the fluid for 
convection heat transfer, and the fin transfers less heat than if 
it had been at the base temperature. This is accounted for by 
the fin temperature effectiveness or fin efficiency r/:. The fin 
temperature effectiveness is defined as the ratio of the actual 
heat transfer through the fin to that which would be obtained 
if the entire fin were at the base temperature (i.e., the thermal 
conductivity of the fin material were infinite). 

The fin efficiency for plate-fin surfaces in heat exchanger 
design is determined under the following idealizations 
(Gardner 1945, Kern and Kraus 1972, Kraus 1982, Mikhailov 
and Ozi~ik 1984). 

(1) The heat flow through the fin is steady state so that the 
temperature, t, in the fin does not vary with time. 

(2) The contact thermal resistance between the fin and the 
base is negligible. 

(3) There are no heat sources and sinks in the fin. 
(4) Radiation heat transfer from the fin is neglected. 
(5) The fin is so thin that its temperature, t, does not vary 

significantly over its thickness, 6:. 
(6) The thermal conductivity of the fin material is uniform 

and constant. 
(7) The heat transfer coefficient for the fin surface, h, is 

uniform over the surface and constant with time. 
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(8) The temperature of the ambient fluid is uniform and 
constant. 

(9) The temperature depression at the fin base is negligible 
in an extended surface heat exchanger. 

(10) Longitudinal heat conduction in the fin along the fluid 
flow direction is negligible. 

Idealizations 1-3 are common for the derivation of ideal 
one-dimensional ( l -D)  fin efficiency ~/i for any fin geometry. 
Idealization 4 restricts the application of r/i to close fin spacings 
or relatively low temperature applications. Idealizations 5-10 
have questionable validity. Ghai ( 1951 ) was apparently the first 
to discuss these latter idealizations qualitatively, and this was 
followed in short order also qualitatively by Gardner (1951) 
(in a discussion of Ghai 's work ), Fortescue (1957), and Hughes 
and Slack (1958). 

In this paper, the ideal 1-D fin efficiency is first discussed. 
Then, a critical assessment of the limitations of idealizations 
5-10 is presented. The relaxation on idealization 10 is discussed 
in the section of Fins with ambient fluid having nonuniform 
temperature (idealization 8). Whenever possible, additional 
quantitative new results are obtained to account for some of 
these effects, and specific design recommendations are made 
for the determination of the fin efficiency for "corrugated" fins 
used in plate-fin heat exchangers. Discussion is primarily 
restricted to straight fins of rectangular profile shown in Figure 
1, but many of the conclusions are applicable to other fin 
geometries used in heat exchangers. 

Ideal o n e - d i m e n s i o n a l  f in e f f i c i e n c y  

Based on the aforementioned idealizations, the governing 
equations for straight fins of rectangular profile are as follows 
(Kraus 1982, Mikhailov 1984): 

(d2T /dY  2) - (mH)2T = 0 (1) 
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Tr= o = 1 (2) 

( d T / d Y ) r = l  = - K B i * T  (3) 

where, Yhasbeen normalized by the fin height H, dimensionless 
fin temperature T = ( t -  to, x ) / ( t  o - t = . : ) ,  the fin parameter 
m = ( h P / A k k : )  ~/2, the perimeter for surface convection 
P =  2(L + 6 : )  in Figure 1, cross-section area for heat 
conduction A k = L 6:  in Figure 1, K = 2 H / 6  I ,  and the Biot 
number at the fin tip Bi* = h ~ 6 : / 2 k p  to and ta.i are 
dimensional fin base and inlet ambient temperatures, and h 
and h~ are heat transfer coefficients of the fin surface and fin 
tip. Note that for L >> 6j-, m = ( 2 h / f i : k : )  ~/2. 

In the context of fin heat transfer, the Biot number, Bi, is 
the ratio of conduction resistance within the fin [ 1 / (2k: /6 I )  ] 
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to convection resistance at the fin surface I - l /h i .  A small value 
of Bi indicates the conduction resistance is small compared with 
the convection resistance; therefore, the temperature gradient 
within the fin is small compared with that at the fin surface, 
and indicates the fin may be approximated as thin for the fin 
efficiency calculation. A large value of Bi, however, indicates 
the conduction resistance is comparable to the convection 
resistance; therefore, the temperature gradient within the fin 
may not be negligible for the fin efficiency calculation 
(two-dimensional [2-D]  approximation).  Hence, Bi appears 
explicitly in the 2-D solution. The aforementioned idealization 
5 may be written as Bi << 1. 

Equations 1-3 can be solved in a closed form (Kraus 1982, 
Mikhailov 1984), and the fin efficiency expressions for three 
boundary conditions are as follows. 

Notat ion  

A:  The surface area of the fins surface, m 2 
Ap The surface area of the primary surface, m 2 
Bi Biot number at the fin surface, h 6 : / 2 k y ,  dimensionless 
Bi* Biot number at the fin tip, he 6 : / 2 k : ,  dimensionless 
Bi ÷ Modified Biot number defined in Equation 20, 

dimensionless 
Bi,  Biot number based on the wall thermal conductivity, 

h ~: /2kw,  dimensionless 
cp Specific heat of ambient fluid, J /kg K 
h Convective heat transfer coefficient on the fin surface, 

W / m  2 K 
he Convective heat transfer coefficient at the fin tip, 

W / m  2 K 
hm Mean convective heat transfer coefficient on the fin 

surface with respect to the length, W / m  2 K 
hw Convective heat transfer coefficient on a wall (primary 

surface), W / m  2 K 
H Fin height, m 
l Modified Bessel function of first kind 
k: Fin thermal conductivity, W / m  K 
k:.o Fin thermal conductivity evaluated at the fin base 

temperature, W / m  K 
k j-.= Fin thermal conductivity evaluated at the ambient 

fluid temperature at X = 0, W / m  K 
kw Wall thermal conductivity, W / m  K 
K Fin aspect ratio, 2 H / 6 : ,  dimensionless 
L Fin length in the fluid flow direction, m 
m Fin parameter, ( 2 h / k :  6:)1/2, m -  
m r Modified fin parameter, defined in Equation 29, m -  1 
qo Heat flux at the fin base, W 
Qo Heat transfer rate at the fin base, qo tS: /k l  (to - ta, i ), 

defined in Equation 19, dimensionless 
q~ Heat transfer rate through the complete (extended 

surface) assembly, defined in Equation 50, W 
r k k l / k w ,  dimensionless 
t Fin temperature, °C 
to Fin base temperature, °C 
ta Ambient fluid temperature, °C 
ta, 1 Ambient fluid inlet temperature, °C 
t~ The temperature of exposed wall surface in absence 

of the fin, °C 
tw The temperature of the fluid flow at the unfinned (the 

other fluid) side, °C 
T Fin temperature, (t - t=.Q/(to - t=.l ), dimensionless 

I -  
T Mean fin temperature, I T dZ,  dimensionless 

Jo 

Ta Ambient fluid temperature, (t a - t aA) / ( t  o -- ta,1), 
dimensionless 

T=.m Mean ambient fluid temperature, dimensionless 
u= Mean velocity of ambient fluid, m/s  
x Cartesian coordinate along the fluid flow direction, m 
X x / L ,  dimensionless 
y Cartesian coordinate along the fin height direction, m 
Y y / H ,  dimensionless 
z Cartesian coordinate along the fin thickness direction, 

m 
Z 2z /6 : ,  dimensionless 

Greek symbols  

~t Thermal diffusivity, m2/s 
fl A slope, defined by Equation 22, K-1  
F Gamma function 
6: Fin thickness, m 
62 Half fin spacing, as shown in Figure 1, m 
6w Wall thickness, m 
e Normal total emissivity of a surface, dimensionless 
eh (qi - r/:)/r/j., Tables 4 and 6, dimensionless 
ei (r h - q:) /r / : ,  Table 1, dimensionless 
ek (r h - r/:)/~/:, Table 3, dimensionless 
e" (r/:.l - qj.)/r/z, Table 2, dimensionless 
q: Fin efficiency, dimensionless 
r/:.l Modified one-dimensional fin efficiency of Equation 

21, dimensionless 
~/~ Ideal one-dimensional fin efficiency, dimensionless 
0 a (t o - ta ) / ( t  s -- ta) , Table 8, dimensionless 
x A parameter, defined in Equation 24, dimensionless 
~b Denotes a function 
2,, Eigenvalue of Equation 15 
p Ambient fluid density, kg/m 3 

Subscripts  

a Ambient 
b Bottom surface 
e Fin tip 
f Fin 
i Ideal 
m Mean 
s Spacing 
t Top surface 
w Wall 
0 Y = 0  
1 X = 0  

Int. J. Heat and Fluid Flow, Vol. 13, No. 3, September 1992 283 



Straight fins of rectangular profile: L. J. Huang and R. K. Shah 

~ 1  fin . ~  

L H / Y 

z 

Figure I Nomenclature for the fin and ambient under 
consideration 

For the fin with finite heat leakage at the fin tip (Bi* finite) 

m2H 2 tanh(mH) + mHKBi* r h = (4) 
(KBi* + m2H 2)[mH + KBi* tanh(mH)]  

For  the thin fin with an adiabatic fin tip (Bi* = 0) 

tanh(mH) 
~ (5) 

mH 

For the very long thin fin with the fin tip temperature 
approaching the ambient temperature (mH >> 1 and 
mH >> KBi*) 

1 
t h - ( 6 )  

mH 

For reference, the values of th of Equations 4 -6  are related as 
follows : rh of Equation 4 < ~h of Equation 5 < r/i of Equation 
6. The fin efficiency rh of Equation 4 will be within 5 percent 
oft  h of Equation 5 for mH ~< 1 and Bi* ~< 0.01. The fin efficiency 
rh of Equation 5 will be within 5 percent of ~/i of Equation 6 
for mH >i 1.84. 

For  most plate-fin heat exchangers, Equation 5 is used to 
determine the fin efficiency. The objective of this paper is to 
determine how accurate is the t/: prediction by Equation 5 in 
light of relaxing idealizations 5-10 as previously mentioned. 

If the ambient fluid temperature is uniform only in the y - z  
plane and variable in the x direction (fluid flow direction) and 
longitudinal heat conduction within the fin along the x direction 
is neglected, Equations 1-3 may be modified as follows: 

(c~2T/t~Y 2) -- (mH)2(T -- T.) = 0 (7) 

Tr= o = 1 (2) 

(c~T/c~Y)r=l = - - K B i * ( T -  T,) (8) 

where the dimensionless ambient fluid temperature Ta = 
( t , -  t , . : ) / ( t o -  t.,1). Similar to Equations 1-3, the problem 
can be solved analytically and the solutions are the same as 
Equations 4-6.  This is an expected result since Equations 4 -6  
are valid as long as the ambient fluid temperature is uniform 
locally at a given x. 

T w o - d i m e n s i o n a l  ( t h i c k )  f in  ana lys is  

In this section, the literature is assessed to relax the thin fin 
idealization 5. 

Avrami and Little (1942) analyzed the thin fin (2-D fin with 
the temperature varying in the y- and z-directions) problem 
for a straight fin of rectangular profile with finite end leakage. 
They solved the problem by using the method of separation of 
variables and provided the formula for heat transfer rate 
through the fin in an infinite series form. Keller and Somers 
(1959) applied the same method for an annular fin of constant 
thickness with finite end leakage and also provided the similar 
formula for heat transfer rate through the fin in an infinite 
series form. Unfortunately, Avrami and Little (1942) and Keller 
and Somers (1959) did not use the Biot number explicitly as 
an independent parameter. They reached conclusions for the 
validity of 1-D and 2-D solutions applicable only for small Biot 
numbers. 

Irey (1968) used the Biot number as an independent 
parameter to analyze a circular pin fin in 2-D. He solved the 
problem by using the method of separation of variables and 
showed that the pin fins can be analyzed accurately (within 2 
percent) using the ideal 1-D fin efficiency expression for Biot 
number Bi < 0.1. Lau and Tan (1973) extended Irey's solution 
to analyze a straight fin of rectangular profile and an annular 
fin, assuming the temperature of the ambient fluid as uniform. 
The differential equations governing a straight fin of rectangular 
profile are given by them as 

(~2T/~y2)  + K2(C2T/CZ 2) = 0 (9) 

Tr=0 = 1, for0 ~< Z ~< 1 (10) 

(c3T/CY)r= I = - K B i * T r = I ,  f o r 0 ~ < Z 4  1 (11) 

(c3T/c3Z)z=o = 0, for0 ~< Y 4 1 (12) 

(CT/CZ)z=t = - B i T z = l ,  for0 ~< Y 4 1 (13) 

where dimensionless Z = z~ (6:/2). Lau and Tan (1973) solved 
this problem by using the method of separation of variables 
and provided the formula for heat transfer rate through the fin 
in the form of an infinite series from which the following t/: 
expression has been derived by the present authors: 

2 ~ sin2 (2,.) 

(KBi + Bi*)~--1 2.  + sin(2m)cos(2m) 

Bi* cosh(2,.K) + 2 m sinh(2,.K) 
x (14) Bi* sinh (2ink) + 2~ cosh (2inK) 

where 

2,. tan 2,. - Bi = 0 ,  Bi = (h&:)/(2k:) (15) 

Equation 14 indicates that r/: = ~b (Bi, K ) when Bi* = 0 for 2-D 
geometries. In contrast, from Equation 5, the 1-D fin efficiency 
r h = c~(mH) for Bi* = 0. Note that mH = KBi u2. Lau and Tan 
(1973) compared the fin efficiencies of Equations 14 and 5, and 
concluded that the major parameter governing the accuracy of 
the ideal 1-D fin efficiency is the Biot number, Bi. A comparison 
of Equations 5 and 14 is made in Table 1 with the relative 
error, e~ = (~h - rl/)/rl:. For solving Equation 14, 100 terms of 
the series were used to get 5-digit accuracy. Note that for most 
plate-fin heat exchangers, Bi << 1 since h ~< 500 (W/m 2 K),  
6:~<0.25mm, and kz ,~200 ( W / m K )  for A1 and 400 
(W/m K)  for Cu. Hence, the tabular results are provided for 
Bi ~< 1 in Table 1. Note that the results presented in Tables 
1-6 are too close to illustrate graphically. 

A review of Table 1 shows that for Bi ~< 0.01 and K < 100, 
the thin fin approximation (idealization 5) of Equation 5 
introduces a maximum of 0.3 percent error. 
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T a b l e  1 The fin efficiencies calculated by Equations 14 and 5 and 
the relative error ej percent of r h with respect to r/~ for Bi* = 0 

q/from ~ from 
Bi K Equation 14 Equation 5 e~ percent 

10 -5 1 1.000 1.000 * 
10 -5 5 1.000 1.000 * 
10-s 10 1.000 1.000 * 
10-s 50 0.992 0.992 * 
10 -~ 100  0.968 0.968 * 

10- 4 1 1.000 1.000 * 
10-4 5 0.999 0.999 * 
10-4 10 0.997 0.997 * 
10-4 50 0.924 0.924 * 
10-4 100 0.762 0.762 * 

10-3 1 0 . 9 9 9  1 .000  0.026 
10-3 5 0.991 0.992 0.032 
10 -3 10 0.968 0.968 0.031 
10-a 50 0.581 0.581 0.021 
10-3 100 0.31 5 0.315 0.017 

10-2 1 0.994 0.997 0.255 
10-2 5 0.922 0.924 0.292 
10-2 10 0.760 0.762 0.249 
10-3 50 0.200 0.200 0.159 
10-2 100 0.100 0.100 0.159 

10-1 1 0.945 0.968 2.454 
10 -1 5 0.570 0.581 1.876 
10 -1 10  0.311 0 .315  1 .480  
10 -1 50 0.062 0.063 1.441 
1 O- 1 1 O0 0.031 0.032 1.441 

1.0 1 0.645 0.762 18.042 
1.0 5 0.181 0.200 10.792 
1.0 10 0.090 0.1 O0 10.764 
1.0 50 0.018 0.020 10.764 
1.0 1 O0 0.009 0.010 10.764 

* e, percent<0.01 percent 

Aparecido and Cotta (1990) modified the 1-D fin solution 
and extended it to cover the thick straight fin of rectangular 
profile and large values of Biot number. They have 
approximately taken into account the 2-D temperature 
distribution across the fin cross section by using the coupled 
integral equation approach. By integrating Equations 9-11 with 
respect to Z and using boundary conditions of Equations 12 
and 13, Equations 9-11 become 

(d27,/dY 2) - [Bi/(1 + Bi/4)]K27, = 0 (16) 

7,,=o = I (17)  

(dT, /dY)r= 1 = -KBi*7 ,  ( 18 ) 

where 7" = 11 T dZ. This modified 1-D fin solution has been 
d O  

presented in terms of dimensionless heat transfer rate Qo at the 
fin base (Y = 0), which is defined as Qo = qo 6: /k : ( to  - to.l ), 
where qo is the heat flux at the fin base. 

Qo = 2( Bi÷)l/2 

Bi* cosh[K(Bi  + )1/2"] + (Bi + )1/2 s inh[K(Bi  + )1/2] 
× 

where 

Bi ÷ - 

Bi* s inh[K(Bi  + )1/2] + (Bi + )1/2 cosh[K(Bi  + )1/2] 
(19) 

Bi 

1 + Bi/4 
(20) 
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The fin efficiency may be easily obtained by using the relation 

(20 (21) 
~/: - 2KB i  + 2Bi*  

No te  that Equat ion 21 relat ing ~/: to (20 is der ived f rom the 
basic def in i t ion of  q: ,  and hence is val id for I -D ,  2-D solutions, 
or any modifications. The relative error ~, percent of Equation 
21 with respect to exact 2-D solution of Equation 14 is listed 
in Table 2 for Bi* = 0. 

A review of the results of Table 2 reveals that for Bi < 0.01 
and K < 100, the modified 1-D solution of Equation 21 
introduces a maximum error of 0.06 percent. Equations 21 and 
19 are easily employed for the evaluation of q:  compared with 
Equation 14, which requires the determination of eigenvalues 
in addition to solving the infinite series expression. 

F i n s  w i t h  n o n u n i f o r m  t h e r m a l  c o n d u c t i v i t y  

In this section, the work is reported on the fins with nonuniform 
thermal conductivity to relax the idealization 6. 

Hung and Appl (1967) analyzed the efficiency of a straight 
fin of rectangular profile by considering the thermal 
conductivity as a function of the temperature. The analysis used 
a bounding procedure (the steepest descent method) that 
yielded analytical and continuous bounding functions for the 
temperature distribution. The thermal conductivity was 
assumed to be linearly varying, with the temperature excess 
over the ambient. The fin temperature was presented in tabular 

T a b l e  2 The fin efficiencies calculated by Equations 14 and 21 and 
the relative error e m percent of Equation 21 with respect to Equation 
14 for Bi* = 0 

r/f from q/: from 
Bi K Equation 14 Equation 21 e,,percent 

10 -5 1 1.000 1.000 * 
10 -5 5 1 .000  1 .000  * 
10 -s 10 1 .000  1 .000  * 
10-5 50 0.992 0.992 * 
10 -s 100  0.968 0.968 * 

I 0 -4 I 1.000 1.000 * 
10 -4 5 0.999 0.999 * 
10-4 10 0.997 0.997 * 
10-4 50 0.924 0.924 * 
10 -4 100 0.762 0.762 * 

10- 3 1 0.999 1.000 * 
10-3 5 0.991 0.991 * 
10 -3 10 0.968 0.968 * 
10 -3 50 0.581 0.581 * 
10-3 100 0.315 0.315 * 

10 -2 1 0.994 0.994 * 
10-2 5 0.922 0.922 0.061 
10 -2 10 0.760 0.760 0.055 
10-2 50 0.200 0.200 0.034 
10 -2 100 0.100 0.100 0.034 

10-1 1 0.945 0.945 0.033 
10 -1 5 0.570 0.570 0.289 
10 -~ 10 0.311 0.311 0.206 
10 -~ 50 0.062 0.062 0.196 
10 -1 100 0.031 0.031 0.196 

1.0 1 0.645 0.638 - 1.077 
1.0 5 0.181 0.179 - 0.921 
1.0 10 0.090 0.089 - 0.930 
1.0 50 0.018 0.018 -0 .930  
1.0 100 0.009 0.009 - 0.930 

* e, percent < 0.01 percent 
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and graphical form with the effects of heat generation, a linear 
variation of heat transfer coefficient, finite radiation, and 
linearly varying thermal conductivity. Our calculations indicate 
that when the fin efficiency is 80 percent and the ratio of thermal 
conductivity at the fin base to that at the fin tip is 1.1, the fin 
efficiency predicted by Equation 5 is about 1.7 percent lower 
when there is no heat generation and a constant heat transfer 
coefficient. Thus, the influence of moderately linear thermal 
conductivity of the fin has a negligible influence on r/i for r h > 80 
percent. 

Aziz and Enamul Huq (1975) and Aziz (1977) solved the 
same problem using a perturbation method. They assumed that 
the thermal conductivity varies linearly with the temperature 

k:  = k: , . [1  + fl(t  -- t . )]  (22) 

where k f , ,  is the fin thermal conductivity at the ambient fluid 
temperature and fl is a constant. The fin efficiency was presented 
as a function of x, as follows, considering no heat generation : 

q: = tanh ( m H ) / m H  + ~ tanh 3 ( m H  ) / ( 3 m H  ) (23) 

where 

K = (k:, o - k:,~)/kf.~ = fl(t  o - t , )  (24) 

Here, k:,o is the thermal conductivity at the fin base. A 
comparison of Equation 23 with Equation 5 is made in Table 
3 with the relative error, ek, computed as (q~ - r l:) /q: .  

A review of the results of Table 3 reveals that r h of Equation 
5 underpredicts the fin efficiency up to about 1.7 percent for 
rh = 80 percent for the variation of the thermal conductivity x 
of 10 percent, when the fin is being cooled. For  fins with most 
common metals, x <~ 10 percent for temperature difference of 
about 200°C between y = 0 and H. Thus, for q( > 80 percent 
and x < 10 percent, the aforementioned specific variation of 
the thermal conductivity has a negligible effect on q:. If the fin 
were being heated, just the opposite effect would have been 
found, i.e., the qi computed by Equation 5 would have been 
slightly higher than the actual fin efficiency when accounting 
for the linear variation in the thermal conductivity with the 
temperature. 

A rectangular composite fin was investigated by Barrow 
(1985) to study the effects of frosting on the heat transfer 
performance of a finned evaporator surface of a heat pump. In 
that study, it was found that the effect of a uniformly thick 
layer of low conductivity frost on the overall heat transfer rate 
was small even when the thickness of the frost was many times 
that of the fin itself. The loss of heat transfer performance was 
attributed to the reduction in the flow rate as a result of an 
increase of the external flow resistance associated with the 
increased blockage caused by the frost, rather than the 
insulation effect of the layer. These findings by Barrow (1985) 
were based on a "parallel resistance" model for the fin heat 
flow originally used by Schenck (1960) and adopted by Epstein 

Table 3 The fin efficiencies calculated by Equations 5 and 23 and 
the relative error e, percent of Equation 5 with respect to Equation 23 

percent r/i q: e, percent 

5 0.900 0.904 0.453 
5 0.800 0.807 0.840 
5 0.700 0.708 1.144 
5 0.600 0.608 1.383 
5 0.500 0.508 1.530 

10 0.900 0.908 0.916 
10 0.800 0.814 1.680 
10 0.700 0.716 2.288 
10 0.600 0.616 2.766 
10 0.500 0.516 3.060 

and Sandhu (1978). A more accurate analysis is presented by 
Barrow et al. (1986).  In their work, the finite difference, finite 
element, and exact mathematical methods were used with 
special reference to the 2-D effects on heat transfer from the 
fin. In particular, a high conductivity rectangular profile fin 
with a uniformly thick low conductivity layer of specified 
dimensions and properties was studied with a view to 
quantifying these effects on the performance of frosted or fouled 
heat exchangers. They concluded that the high conductivity fin 
plays a dominant role in the heat transfer mechanism, with the 
reduction of heat flow by the so-called "insulating layer" due 
to frosting being surprisingly small. However, our recalcula- 
tions using the equations of Barrow et al. (1986) indicate that 
the reduction of heat transfer due to frosting, which is confined 
principally to the low conductivity layer, is not insignificant; 
it is about 8 percent at typical ~f  values of 96 percent. 

F i n s  w i t h  v a r i a b l e  h e a t  t r a n s f e r  c o e f f i c i e n t s  

Influence of nonuniform heat transfer coefficient over the fin 
surface on the fin efficiency (relaxation of idealization 7) i s  
considered in this section. 

Ghai and Jakob (1950) and Ghai ( 1951 ) have experimentally 
demonstrated that heat transfer coefficients attained signifi- 
cantly greater values at the fin tip than at the fin base and 
concluded that the idealization of uniform heat transfer 
coefficient is not necessarily realistic. Significant variations in 
the heat transfer coefficient have also been demonstrated by 
Harris and Wilson (1961), Stachiewicz and McKay (1963), 
Stynes and Myers (1964). Saboya and Sparrow (1976) show 
that the heat transfer coefficient can vary by a factor of 50 (and 
not 50 percent) over a fiat plain fin in a one-tube-row finned 
exchanger. Transient techniques using model fin tubes injected 
into a hot airstream were used by Jones and Russell (1978, 
1980) to measure local heat transfer coefficients. A large 
variation was also found. 

Han and Lefkowitz (1960) assumed a power-law variation 
of h over the fin height, H. They considered the heat transfer 
coefficient increasing with y in the following form : 

h ( r )  = h,.(1 + 7)(Y) ~ (25) 

where h., is the average heat transfer coefficient and 7 is a 
constant. After a rather involved transformation of variables, 
Han and Lefkowitz showed that with the boundary conditions 
of the constant fin base temperature, to, and an insulated tip, 
the fin efficiency is given by 

qf = [(• -~ 2)r(? + 1 ) / ( m H )  2(~+ 1)] 1/(r+ 1)AB (26) 

where 

A = l(r+l/y+2)(mrH)/l_(~+2/~+l)(m~H ) (27) 

B = F(y + 1/? + 2 ) / F ( 1 / ?  + 2) (28) 

m r = 2(? + 1) l /2m/(  7 + 2) (29) 

It was concluded that the idealization of uniform heat transfer 
coefficient may lead to gross errors in analyzing heat transfer 
of extended surfaces. For  a particular linear variation (y = 1 ), 
the fin efficiency of Equation 26 may be simplified as 

6 F ( 2 / 3 ) I z / 3 ( m x H )  (30) 
fly = F (1 /3  ) ( m H ) 4  I_ 2 /3 (mlH)  

The fin efficiencies of Equation 5 and 30 and the relative error 
of Equation 5 with respect to Equation 30 are presented in 
Table 4, where the relative error eh = (~/i - q: ) /q : .  

A comparison of Equations 30 and 5 in Table 4 reveals that 
r/: of Equation 30 is lower by 6, 17, and 24 percent for qi of 
Equation 5 of 90, 80, and 70 percent, respectively, although 
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Table 4 The fin efficiencies of Equations 5 and 30 and the relative 
error 8h of Equation 5 with respect to Equation 30 

mH qt q~ ~'h percent 

0.1 0.993 0.997 0.33 
0.2 0.974 0.987 1.31 
0.3 0.944 0.971 2.86 
0.4 0.905 0.950 4.91 
0.5 0.861 0.924 7.34 

0.6 0.814 0.895 10.02 
0,7 0.765 0.863 12.85 
0.8 0.717 0.830 15.72 
0,9 0.672 0.796 18.53 
1.0 0.628 0.762 21.22 

1.1 0.588 0.728 23.74 
1.2 0.551 0.695 26.06 
1.3 0.517 0.663 28.16 
1.4 0.486 0.632 30.03 
1.5 0.458 0.603 31.69 

1.6 0.433 0.576 33.13 
1.7 0.409 0.550 34.39 
1.8 0.388 0.526 35.47 
1.9 0.369 0.503 36.39 
2.0 0.351 0.482 37.18 

3.0 0.236 0.332 40.52 
4.0 0.177 0.259 40.86 
5.0 0.142 0.200 40.67 
6.0 0.119 0.167 40.36 
7.0 0.102 0.143 39.97 

8.0 0.090 0.125 39.53 
9.0 0.080 0.111 39.02 

10.0 0.072 0.1 O0 38.46 

the mean value of the nonuniform heat transfer coefficient h,~ 
is equal to the value of the uniform case. These results (and 
Table 4) clearly indicate that any significant variability in the 
heat transfer coefficient over the fin surface will reduce the 
actual fin efficiency significantly. Since h is determined 
experimentally for most heat exchanger surfaces by using 
Equation 5 in the original data reduction, the subsequent use 
of Equation 5 for the design of a heat exchanger should not 
introduce the large errors shown by Table 4. However, one 
needs to be aware of the impact of nonuniform h on ~/I, 
particularly, if there are significant differences in r/y between 
the original data and that of the actual heat exchangers. 

Chen and Zyskowski (1963) analyzed the problem with an 
exponential variation of h versus y by using the same solution 
procedure as that in Han and Lefkowitz (1960). Their 
conclusion is similar to that of Han and Lefkowitz (1960). 
Cumo et al. (1965) conducted a 2-D study with a more general 
form of the variation of the heat transfer coefficient; the fin 
efficiency was obtained numerically. With a few numerical 
results, they again demonstrated the conclusions of the Han 
and Lefkowitz (1960) and Chen and Zyskowski (1963). Snider 
and Kraus (1982) demonstrated how perturbation theory could 
be used to estimate the effect of an arbitrary variation in the 
heat transfer coefficient. However, no specific results are 
presented. 

Qnal (1985, 1987) analyzed 1-D straight fin of rectangular 
profile assuming that the heat transfer coefficient is a power 
function of the difference between the temperature of the fin 
and that of the ambient fluid. He considered the heat transfer 
coefficient as a function of the dimensionless T in the following 
form : 

h = aT" (31) 

Straight fins o f  rectangular prof i le: L. J. Huang and R. K. Shah 

where a and n are positive constants. After a rather involved 
transformation of variables, l~nal (1985) showed that with the 
boundary conditions of the constant fin base temperature to 
and an insulated tip, the fin temperature of Equation 1 has a 
closed-form solution for n = 1 and 2 as follows. 

~F(dp/a) = al/2Y (32) 

where 

a 1 = (4aT'~nz) / [ (n  + 2)ky cSy] (33) 

Te is the fin tip temperature and may be evaluated by solving 
Equation 32, and F(c~/ct) is the Legendre's (incomplete) 
normal elliptic integral of the first kind. For  n = 1 

( = 3-1/4 

cos qb = (31/2 + 1 - T/T , ) / (31 /2  - 1 + T I T s )  

(34) 

for0 ~ ~ ~ 
(35) 

(36) = ~z/12 

For  n = 2 

= 2 -1/2 (37) 

c o s $ =  Te /T  for0~<~b~<n (38) 

ct = rt/4 (39) 

The fin efficiency is given as 

2T"+X(T~("+2)-  1)1/2 
r/y = (40) 

(n + 2)a]/z 

For  n = 1 and 2, a of Equation 31 can be approximated as 
(2h,.)/(1 + Te) and (3h,.)/(1 + T e + T~), respectively; there- 
fore, at and qy of Equations 33 and 40 take the form shown in 
Table 5. Here, h., is the mean heat transfer coefficient defined 
as the integrated average of local heat transfer coefficient with 
respect to the length. It should be noted that Te is only a 
function of n and mH and may be evaluated by solving Equation 
32 by setting Y = 1; therefore, for n = 1 and 2, qs is only a 
function of mH. The fin efficiencies of Equations 5 and 40 and 
the relative error of Equation 5 with respect to Equation 40 
are presented in Table 6 for n = 1 and 2, where the relative 
error ~h = ( q i -  q~)/~I" 

A comparison of Equations 40 and 5 in Table 6 reveals that 
~/y of Equation 40 is higher by 1 percent when n = 1 and 2.4 
percent when n = 2 for q~ of Equation 5 as 85 percent, although 
the mean value of the nonuniform heat transfer coefficient is 
equal to the value for the uniform case. 

Barrow et al. (1986) investigated the effect of variable heat 
transfer coefficient of a composite fin on heat transfer. The 
problem was solved by finite difference, finite element, and exact 
mathematical analyses. In particular, a high conductivity 
rectangular-profile fin with a uniformly thick low-conductivity 
layer of specified dimensions and properties was studied with 
a view to quantifying these effects on the performance of frosted 
or fouled heat exchangers. The reduction of heat transfer due 
to (1) 2-D effects, which were confined principally to the layer, 
and (2) a linearly varying heat transfer coefficient was about 

Table 5 Expressions for a 1 and r h of Equations 33 and 40 for n = 1 
and 2 

n = l  n = 2  

4T, 
al - - ( m H )  = 

3(1 + T.) 

T;+~/2[ ( T~ -3 - 1 ) (1 + 7",)] v2 
rh 

3V2(mH) 

3T, = 
(mH) 2 

2(1 + 7",+ T, =) 

T; (T~  4 - 1 ) (1 + To + T2,)] l/z 

6V=(mH) 
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T a b l e  6 The f in eff iciencies of  Equat ions 5 and 40 and the relative error e h of  Equat ion 5 w i th  respect to Equat ion 40 

n = l  

mH ~1, ~lf sh percent r/f 

/ 9 = 2  

eh percent 

0.1 0.997 0.997 0.00 0.997 0.00 
0.2 0.987 0.987 - 0.01 0.987 - 0.02 
0.3 0.971 0.971 - 0 . 0 4  0.972 - 0 . 0 7  
0.4 0 .950 0.951 - 0.11 0 .952 - 0.22 
0.5 0 .924 0.927 - 0.26 0.929 - 0.50 

0.6 0 .895 0 .900 - 0.49 0 .904 - 0.94 
0.7 0 .863 0.871 - 0 . 8 4  0.877 - 1.56 
0.8 0 .830 0.841 - 1.29 0 .850 - 2.38 
0.9 0 .796 0.811 - 1.86 0 .824 - 3 . 3 7  
1.0 0 .762 0.781 - 2.53 0.798 - 4.53 

1.1 0 .728 0.753 - 3.30 0.773 - 5.83 
1.2 0 .695 0 .725 - 4 .15 0 .749 - 7.23 
1.3 0.663 0 .698 - 5.05 0.726 - 8.71 
1.4 0 .632 0 .673 - 6 .00 0.705 - 10.25 
1.5 0.603 0 .649 - 6.98 0.684 - 11.80 

1.6 0 .576 0.626 - 7 . 9 8  0.665 - 13.37 
1.7 0 .550 0 .604 - 8.97 0.647 - 14.92 
1.8 0 .526 0 .584 - 9.96 0 .630 - 16.45 
1.9 0.503 0.565 - 10.94 0 .613 - 17.95 
2.0 0.482 0.547 - 11.89 0 .598 - 19.40 

3.0 0 .332 0 .413 - 1 9 . 6 7  0.482 - 3 1 . 1  4 
4.0 0 .250 0.331 - 24.61 0.408 - 38.71 
5.0 0 .200 0.277 - 27.86 0.356 - 43.83 
6.0 0.167 0.239 - 3 0 . 1 5  0 .318 - 4 7 . 6 2  
7.0 0 .143 0 .210 - 31.89 0 .290 - 50.68 

8.0 0 .125 0.187 - 3 3 . 2 8  0.266 - 53.09 
9.0 0.111 0 .169 - 3 4 . 4 3  0.242 - 5 4 . 1 3  

10.0 0.1 O0 0.155 - 3 5 . 4 2  0.219 - 54.36 

11 percent at typical r/f values of 96 percent, in contrast to 8 
percent for a constant heat transfer coefficient mentioned 
earlier. This again indicates a significant effect on ~/l' 

For a horizontal fin (Figure 2) in a natural convection 
environment, the heat transfer coefficient attains significantly 
greater values on the fin top surface than that on the fin bottom 
surface (Ozi~ik, 1985). Look (1988, 1989) presented the results 
of an investigation of these unequal convection coefficient effects 
on the heat loss from a straight fin of rectangular profile. He 
employed heat balance integral approaches originally used by 
Steir (1976) to the 2-D thick fin model with uniform ambient 
temperature. A comparison was made of heat transfer Q = by 
the fin where Bit = Bib and the heat transfer Q~ by the fin 
when Bit > Bib, where superscripts = and ¢: denote the heat 
transfer coefficients on the top and bottom surfaces equal and 
unequal, respectively; and subscripts t and b denote the heat 
transfer coefficient on the top surface and bottom surface of 
the fin, respectively. He concluded that Q =/Q ~ can be as much 
as 1.95 for Bib/Bit = 0, Bi, = 0.01, and K = 5. Note that Look 
(1988, 1989) computed Q= by assuming the Biot numbers on 
the top and bottom surfaces as equal to Bi,, but not 
(Bi t + Bib)/2. Based on our calculations, 1 < Q=/Q~ < 1.05 
for Bib/Bi t = 0-1, Bi t ~< 0.01, and K = 5-100. Here, we used 
equations of Look (1989) to calculate Q~ and we used Bi 
[ = (Bi, + Bi~)/2] in Equation 14 to calculate r/s, and used this 
r/I in Equation 21 to obtain Qo, which is equal to Q=. 
Incidentally, the first column of Table 1 of Look (1989)should 
be Bib/Bi t . 

Recently, Ma et el. (1991) studied the effect of 2-D 
rectangular fin with variable heat transfer coefficients using a 
Fourier series approach. They assumed that the fin temperature 
is independent of x as shown in Figure 1. The dimensionless 

Base 
.temperature t O t for the perfect fin 

f 

~ =  t for the actual fin 

~. t a for transverse mixing 
~ ._~  . . . .  ~ ' _ _  

~" - t~for  no transverse mixing 

I - -  

0 H y 

0 o t  I , , , , ,  
-, y 6f ~"~  qe 

to /L  t t ' I ' 
z C o n v e c t i v e  hea t  t r a n s f e r  

to ambient 
Figure 2 Temperature d ist r ibut ions for actual and perfect f in w i th  
and w i t hou t  transverse mix ing ambient  temperature 

T of the fin was provided in a complicated infinite series 
integral. The variation of h on the fin surface was allowed to 
be arbitrary. However, they solved a three-dimensional fin 
problem using their 2-D analysis to demonstrate the combined 
effects of a thick fin and variable heat transfer coefficient with 
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the following data : fin height H = 0.04 m, the cross section of 
the square fin as 0.01 x 0.01m, ky= 100W/InK,  h = 
50 W / m  2 K, h = 50 W / m 2 K  on all surfaces along the first 
0.01 m of fin height, h = 100 W / m  2 K on all surfaces along the 
remaining 0.03 m of fin height, and an adiabatic fin tip. The 
results were compared with the 1-D solution originally 
proposed by Shah (1971) and Kraus et al. (1978) and adopted 
by Snider and Kraus (1982). In this 1-D method, the whole 
fin is considered as two fins in cascade, and the average heat 
transfer coefficient is determined by use of a lengthwise 
weighting function. They concluded that the heat transfer 
computed by the 2-D analysis is 8.7 percent higher than that 
by 1-D solution for ql of Equation 5 of 85 percent. 

Fins w i t h  a m b i e n t  f luid having n o n u n i f o r m  
t e m p e r a t u r e  

In this section, the idealization 8 of fins with uniform ambient 
fluid temperature is relaxed. 

In 1-D analyses, it is assumed that the temperature 
distribution of the fluid flowing over the fin is uniform (i.e., 
fluid is perfectly mixed) at any cross section. In reality, however, 
this is not the case. The temperature of the ambient fluid varies 
exponentially at any flow cross section due to (1) a different 
temperature potential and different heat transfer rates along 
the coordinate y, and (2) no transverse mixing of the fluid as 
shown in Figure 2. Shah (1985) idealized the ambient 
temperature profile at any flow cross section parallel to the fin 
temperature profile; the difference t - t~ between the fin and 
ambient temperature at any x was constant, independent of y ; 
and the efficiency of a straight fin of rectangular profile with 
the insulated tip was 

~/y = 1/[1 + (m2H2/3)] (41) 

Prediction of Equation 41 are 10, 4 and 1 percent lower than 
r/i of Equation 5 for r/i = 50, 65, and 80 percent, respectively. 
Thus, for r/i > 80 percent, the aforementioned specific variation 
in the temperature of the ambient fluid has a negligible effect 
on ~f, 

Var iab le  a m b i e n t  f luid t e m p e r a t u r e  in x - y  
coord ina tes  

Since no generalized results are available to take into account 
actual variations in the ambient fluid flow (x) direction, this 
problem is solved here numerically considering the ambient 
fluid as air. However, the resultant fin efficiencies from the 
analysis should be valid for other ambient fluids. Note that in 
this case, the thin fin temperature will be considered 2-D, i.e., 
varying with y as well as x. Hence, longitudinal conduction in 
the thin fin (in the x direction) will be considered finite. The 
fin efficiency in this case depends on one additional parameter 
H / L  in addition to mH and Bi*. 

Consider that the mixing along the fin height H 
(transverse mixing) may be negligible after a short distance 
along the fin flow length L (Figure 1 ) as would be the case for 
laminar and low Reynolds number turbulent flow. In such a 
case, the ambient temperature is a function of x and y. The 
nomenclature for the fin to be analyzed is described in Figures 
1 and 2. The fin is considered to be thin and the temperature, 
t, does not vary significantly over its thickness, 6f. The 
temperature of the fin is considered to be 2-D in the x and y 
coordinates. The governing equations for the fin and ambient 
are as follows. 

(H/L  )2(c32T /OX 2 ) + (t;32T /t~Y 2) - ( m n ) 2 ( T  - T~) = 0 
(42) 

Straight fins of rectangular profile: L. J. Huang and R. K. Shah 

Tr= 0 = 1, for0 ~< X ~< 1 (43) 

( S T / S Y ) r = I = O ,  f o r 0 ~ < X ~ < l  (44) 

(ST/SX)x=o = 0, for0 ~< Y ~< 1 (45) 

(ST/SX)x= 1 = 0, for0 ~< Y ~< 1 (46) 

where X = x /L ;  all other variables have been defined 
previously, or see the Notation. The governing equation for 
the ambient fluid is 

(OTJc~X) = [NUL/(Re P r ) ] ( T  - Ta) (47) 

with the boundary condition as 

T=lx=o = 0 (48) 

where Nusselt number Nuz = hL/k°, Prandtl number Pr = v/ot 
and Pr = 0.7 for air, Reynolds number Re = pu= 6sly, and k,, 
v, ~, p, fis, u, are the ambient fluid thermal conductivity, 
kinematic viscosity, thermal diffusivity, density, half-fin spacing, 
and the average velocity of the ambient fluid, respectively. 
Governing Equations 42-48 for the fin temperature, T, and 
ambient temperature, T=, are solved simultaneously. 

When the ambient fluid is idealized as mixed in the transverse 
direction, its temperature is 1-D and is only a function of X. 
In this case, Equation 42 is not valid, instead it is modified as 

(H/L )2(d2T /c3X 2) + (632T /~Y 2) 

-- (mH)E(T - T~.,,) = 0 (49) 

with the boundary conditions of Equations 43-46 still valid. 
The cross-sectional average ambient temperature, 7"=, m (which 
is only a function of X ) of Equation 49 is obtained by averaging 
2-D ambient temperature, T=, where T~ is obtained by solving 
Equations 47 and 48. 

Equations 42 and 49 were solved using a numerical procedure 
based on a central difference scheme having a second-order 
accuracy. The alternating direction implicit method was 
employed to solve the difference equations iteratively starting 
from appropriate guesses. This method is unconditionally stable 
(Anderson et al. 1984). 

Results and discussions 

The fin efficiencies for ambient fluid with no transverse mixing 
(r/f,2), with transverse (r/y.1), and the ideal 1-D case (r/i of 
Equation 5) are presented in Table 7 and the corresponding 
variations in Ta along X are shown in Figure 3 for various 
values of mH. The following specific values are used to generate 
the results: the ambient fluid is air with Pr = 0.7, Re = 104, 
fin base temperature to = 200°C, and inlet ambient temperature 
taA = 30°C. 

In Figure 3, the local temperature of ambient fluid with no 
transverse mixing and with transverse mixing are plotted 
against the fluid flow direction for the case of low mH ( = 0.25) 
and large mH ( = 1 ). For  the no transverse mixing case, the axial 
variation of the ambient fluid temperature is shown for two 
specific locations along the fin, Y = 0 and 1. When mH is low 
(mH = 0.25), the fin efficiency is high and the temperature 
variation along the fin is small. Therefore, the ambient fluid 
temperature variation along the Y-direction is small, as found 
by the curves for Y = 0 and 1 in Figure 3 being almost the 
same. Since the heat transfer to the ambient fluid is low due 
to a low value of h (low mH), the ambient fluid temperature 
rise along the X-direction (fluid flow direction) is small, about 
30°C as compared with (to - t=A) -- 170°C. For  a large value 
of mH (mH = 1 ), the fin efficiency is low, the fin temperature 
variation across the fin is large, the ambient fluid temperature 
variation along the Y-direction (between Y = 0 and 1 ) is large 
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Table 7 Effect with and without transverse mixing of ambient fluid on the fin efficiency for H/L = 0.2, 0.5, and 1.0 

H/L = 0.2 H/L = 0.5 

mH q, qr.2 q~r 1 ~.2 ~.~ 

H/L = 1.0 

0.1 0.997 0.997 0.997 0.997 0.997 0.997 0.997 
0.2 0.987 0.987 0.987 0.987 0.987 0.987 0.987 
0.3 0.971 0.971 0.971 0.971 0.971 0.971 0.971 
0.4 0.950 0.950 0.950 0.950 0.950 0.950 0.950 
0.5 0.924 0.924 0.924 0.924 0.924 0.924 0.924 

0.6 0.895 0.895 0,895 0.895 0,895 0.895 0.895 
0.7 0.863 0.863 0.863 0.863 0.863 0.863 0,863 
0.8 0.830 0.829 0.830 0.829 0.830 0.830 0.830 
0,9 0.796 0.794 0.796 0.796 0.796 0.796 0.796 
1.0 0.762 0.759 0,762 0.761 0.762 0,762 0.762 

1.1 0.728 0.724 0,728 0.727 0.728 0,728 0.728 
1.2 0.695 0.685 0.695 0.694 0.695 0.695 0.695 
1.3 0.663 0.655 0,663 0.662 0.662 0.663 0.662 
1.4 0.632 0.622 0,632 0.631 0.632 0.632 0.632 
1.5 0.603 0.590 0,603 0.601 0.603 0.603 0.603 

1.6 0.576 0.559 0,576 0.573 0.576 0.576 0.576 
1.7 0.550 0.530 0,550 0.546 0.550 0.550 0.550 
1.8 0.526 0.502 0,526 0.521 0.526 0.525 0,526 
1.9 0.503 0.475 0,503 0.497 0.503 0.502 0.503 
2.0 0.482 0.450 0,482 0.475 0.482 0.481 0.482 

3.0 0.332 0.267 0,332 0.311 0.332 0.326 0.332 
4.0 0.250 0.171 0,250 0.215 0.250 0.240 0.250 
5.0 0.200 0.118 0,200 0.155 0.200 0.185 0.200 
6.0 0.167 0.086 0.167 0.116 0.167 0.148 0.167 
7.0 0.143 0.065 0.143 0.089 0.143 0.121 0.143 

8.0 0.125 0.052 0.125 0.070 0.125 0.1 O0 0.125 
9.0 0.111 0.045 0.110 0.057 0.111 0.084 0.111 

10.0 0.100 0.034 0.099 0.047 0.099 0.071 0.1 O0 

200 
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" 5  

~- 80 
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• ~ 40 

0 . . . .  0'.2 . . . .  014 . . . .  016 . . . .  0!8_ . . . .  

X 
Figure 3 Local ambient temperature with and without transverse 
mixing effects 

(about 20°C), and the heat transfer to the ambient is high due 
to high value of h (high mH). Therefore, the ambient fluid 
temperature rise along the X-direction is large, about 150°C 
as compared with (to - t.,1) = 170°C. 

The effects of no transverse mixing of ambient fluid and 
transverse mixing of ambient fluid on the fin efficiency are listed 
for various values of mH in Table 7 for H / L  = 0.2, 0.5, and 
1.0. In Table 7, q r,2 is the fin efficiency obtained by solving 
Equations 42-48 using no transverse mixing of the ambient 
fluid (a function of x and y),  r0.,1 is the fin efficiency obtained 
by solving Equations 49 and 43-48 using transverse mixing of 

ambient fluid (a function of x only ), and qi is ideal fin efficiency 
of Equation 5. When mH is small, the temperature variation 
of the ambient fluid in the Y-direction for the no transverse 
mixing case is small, hence the fin efficiencies for the no 
transverse mixing and transverse mixing cases are almost the 
same. When mH is large, the temperature variation of the 
ambient fluid in the Y-direction for the no transverse mixing 
case is large (Figure 3), and the fin efficiency for the no 
transverse mixing case is lower than that of the transverse 
mixing case (Table 7). Thus, for qi > 60 percent (mH < 1.5), 
this reduction is less than 1 percent. The results also depict two 
other features: ( 1 ) the fin efficiency qI,~ of the transverse mixing 
case is almost the same as the ideal 1-D solution for ~/I/> 10 
percent, the minor difference between the two cases is finite 
(for r/r,1 ) versus zero longitudinal conduction (for t/i ) in the 
fin along the X-direction; and (2) as mH increases and H/L  
decreases, the effect of longitudinal heat conduction increases. 
However, again, the effect is negligible for q~ > 80 percent 
regardless of the values of H / L  and mH considered. 

Fins w i t h  t empera tu re  depression at the base 

In an extended surface heat exchanger, when the fin area is an 
order of magnitude higher than the primary (exposed wall) 
surface area, a large amount of heat is transferred through the 
fins compared with that through the primary surface. As a 
result, the fin base temperature is lower than the primary surface 
temperature, if the fin is being cooled. This difference is referred 
to as the fin base temperature depression. This, in turn, may 
affect the heat transfer through the fin, and, effectively, results 
in reduced or increased fin efficiency for the same base 
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temperature. In this section, the literature is assessed on this 
effect to relax the idealization 9. 

Sparrow and Hennecke (1970) were the first investigators to 
analyze the extent of temperature depression at the fin base in 
detail. They numerically evaluated the case of a single straight 
fin of rectangular profile affixed to a thick wall of large surface 
area. It was idealized that the fin and wall (primary surface) 
have the same thermal conductivity and the surface heat transfer 
coefficient is uniform and equal on all surfaces. The temperature 
at the fin base was presented and compared with the 
temperature of the exposed wall surface in absence of the fin. 
They demonstrated the existence of the temperature depression 
by the presence of the fin and the results were presented for 
m H  = 1 ( m H  = KBi 1/2) and r/i = 76.2 percent. They found that 
for Bi = 0.25, 0.04, 0.01, and 0.0025 (correspondingly K = 2, 
5, 10, and 20, respectively), the dimensionless temperature at 
the fin base Od is 77, 79, 85, 90 percent compared with the 
temperature of the exposed wall surface in the absence of fin. 
Here Od = (to --  t a ) / ( t ,  --  t=) and t~ is the temperature of the 
exposed wall surface in absence of the fin. The dimensionless 
temperature depression is then 1 - Od. 

Klett and McCulloch (1972) analyzed a similar problem by 
using the same solution procedure as that in Sparrow and 
Hennecke (1970), but employing a different thermal conduc- 
tivity of the fin material from that of the parent body (wall). 
The temperature depression at the fin base was presented for 
m H  = 1, where m was based on the wall thermal conductivity. 
When the wall material was the same as the fin material, they 
reproduced Sparrow and Hennecke's (1970) results. For the 
fin material different from the wall material, they concluded 
that increasing the thermal conductivity of fin material 
decreases the temperature at the base, as one would expect. 
However, the results shown in their figures reveal the opposite 
conclusion. We believe the figures have typographical errors. 
The corrected results (presently calculated) are shown in Table 
8, where r k = k y / k w ,  Biw = h 6 : / k  w. 

Table 8 depicts two features: (1) for a given r k and t/i, the 
temperature depression at the fin base increases (i.e., 0 d 
decreases) with increasing Biw (i.e., increasing h and 6:) ,  and 
(2) for given Bi w and K, the temperature depression at the fin 
base increases with r k or t/i. 

Further studies of the temperature depression in multifin 
arrays were conducted by Sparrow and Lee (1975) for the 
straight fins of rectangular profile attached to a circular tube, 
and by Suryanarayana (1977) for straight fins attached to a 
plain wall. Both studies have taken into account the effects of 
the heat transfer coefficient on the back side of the finned wall 
(the other fluid side ) and the presence and proximity of adjacent 

Table 8 The dimensionless temperature at the fin base as a 
function of the ratio of thermal conductivity of the fin material to 
that of the wall material 

r, B i w K r/i 0n percent 

1 0.25 2 0.762 77.0 
1 0.0625 4 0.762 78.0 
1 0.0156 8 0.762 85.0 

4 0.25 2 0.924 63.0 
4 0.0625 4 0.924 70.0 
4 0.0156 8 0.924 80.0 

10 0.25 2 0.968 59.0 
10 0.0625 4 0.968 68.0 
10 0.0156 8 0.968 76.0 

20 0.25 2 0.984 57.0 
20 0.0625 4 0.984 66.5 
20 0.0156 8 0.984 74.5 

Straight fins of rectangular profile: L. J. Huang and R. K. Shah 

fins in the multifin array. Sparrow and Lee (1975) obtained a 
2-D solution by solving the appropriate energy equations for 
the fin and the wall separately using a separation of variables 
method. From such a solution, uniform but different 
temperatures at the fin base and wall surface (primary surface) 
were obtained by averaging the temperature at the fin base and 
on the unfinned portion of the tube surface, respectively. These 
two uniform but different temperatures at the fin base and the 
unfinned base (tube area) were then used to calculate the fin 
heat flux and the heat flux on the unfinned base. The 
conventional analysis of heat transfer through a finned tube 
was employed as 1-D solution and assumed the outside surface 
temperature to be circumferentially uniform (Kern and Kraus 
1972). This solution was found from an overall heat balance, 
which is based on purely radial heat conduction in the tube 
wall. The results showed that the 1-D solution overestimates 
the fin heat flux, but underestimates the heat flux on the 
unfinned base. They concluded that the fin heat flux error 
increases with an increase in the fin spacing, the heat flux error 
on the unfinned base increases with a decrease in the fin spacing, 
and the total heat transfer through the complete assembly could 
be higher or lower than that based on no temperature 
depression at the base. 

Suryanarayana (1977)presented multifin array numerical 
results for straight fins attached to a wall. He analyzed three 
1-D models for the fin and the wall, and also one 2-D fin and 
wall assembly using a finite-difference technique. In his analysis, 
he covered the following ranges of parameters: Biot number 
of the fin based on the heat transfer coefficient on the fin surface 
as 0.1, the ratio of the heat transfer coefficient at the unfinned 
side to the finned side = 1, 10, 100, the ratio of the fin height 
to fin thickness = 1, 2.5, 5.0, the ratio of the fin spacing to fin 
thickness = 1.5, 2.0, 3.0, and the ratio of the wall thickness to 
fin thickness = 0.25, 0.5, 1, and 2.5. The nomenclature for a 
straight fin attached to a wall is shown in Figure 4. The first 
1-D model assumed that the fin base (AB in Figure 4) 
temperature is the temperature of exposed wall surface in the 
absence of the fin. The second 1-D model ignored the thermal 
resistance of the wall (ABCD in Figure 4) and assumed that 
the fin base (AB in Figure 4) is directly exposed (without any 
thermal resistance) to the other side of the wall. The third 1-D 
model assumed that the wall (ABCD in Figure 4) is part of 
the fin, but only has y-direction heat transfer (assumed AC 
and BD in Figure 4 as insulated). He also analyzed the 2-D 
model of Figure 4 for the same range of parameters. Comparing 
with the 2-D solution, he concluded that the first and second 
1-D models overestimate the fin heat flux, but the third 1-D 
model underestimates the fin heat flux. Unfortunately, he did 
not provide explicitly any results for the 2-D solution. Since 
none of his three 1-D models took into account the temperature 
depression effect, no conclusion on the effect of the temperature 
depression on the fin efficiency or total heat transfer can be 
derived from his results. 

Heggs and Stones (1980) analyzed straight and annular fins 
numerically using a 2-D model considering finned and the 
unfinned regions of the extended surface exchanger as an entity 
(see Figure 4 for nomenclature for the straight fin). Note that 
Sparrow and Lee (1975) analyzed finned and unfinned regions 
separately. Heggs and Stones (1980) employed Equation 4 with 
he = h for the 1-D fin analysis. Subsequently, they determined 
the total heat flow rate through the complete extended surface 
assembly, which includes both primary (unfinned) surface and 
the fins. For  1-D analysis, the total heat flow rate, qt, through 
the complete extended surface assembly, was determined from 

ql  = (hpAp + ~lih:Af) A T  (50) 
where the subscripts p and f denote the primary and fin 
surfaces, respectively, A T is the temperature difference between 
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Figure 4 Nomenclature for longitudinal fin attached to a wall 

the wall and ambient fluid, and ~/~ is given by Equation 4. In 
their analysis, they covered the following ranges of parameters : 
Blot number of the wall based on the unfinned (the other fluid) 
side heat transfer coefficient as 2, the ratio of the heat transfer 
coefficient at the unfinned side to finned side = 2-20,000, the 
ratio of the thermal conductivity of the fin to wall = 1-25, the 
ratio of the fin height to fin thickness = 1-160, the ratio of the 
fin spacing to fin thickness = 1-50, and the ratio of the wall 
thickness to fin thickness = 1-100. They found that the actual 
heat transfer rate through the extended surface assembly, using 
the more exact 2-D representation, is always higher than that 
from the I-D model. The difference can be as high as about 20 
percent, depending on the range of the parameters. However, 
for the industrially useful range of parameters (Bi < 10-3 and 
r/i > 80 percent), the difference is about 4 percent or less. In 
contrast, it should be emphasized that Sparrow and Lee ( 1975 ) 
found that the effect of the fin base temperature depression is 
to increase or decrease the total heat transfer rate through the 
extended surface assembly; this is attributed to their different 
modeling and slightly different geometry. 

Heggs et al. (1982) employed a series truncation method to 
study the 2-D straight fin problem considering finned and the 
unfinned regions of the extended surface exchanger as an entity. 
Manzoor (1984) conducted the same 2-D straight fin problem 
as that in Heggs et al. (1982) but employed finite-difference, 
finite-element, boundary integral equation, and series trunca- 
tion methods. Both radiative and convective heat dissipation 
have been included in his model. He recommended that the 
boundary integral equation method be used for 2-D problems 
because it gives solutions of comparable accuracy to the 
finite-difference and finite-element methods, but is computa- 
tionally more economical. He states that the series truncation 
method is by far the best suited to this particular problem 
because it gives the most accurate solutions with minimal 
computational requirements, if the problem does not involve 
curved or tapered fin profiles or nonuniform heat transfer 
coefficients. For  1-D analysis, Manzoor (1984) modified 
Equation 50 by including the radiation effect to calculate total 
heat flow rate through the complete extended surface assembly 

and Equation 4 for the 1-D fin. In his analysis, the results for 
two particular problems were presented: (1) B i =  10 -5, 
hw/h = 200, ky/kw = 10, H/hy = 100, 6s/6 f = 2, 6w/6y = l, 
ew =0 .6 ,  es =0 .8 ,  and the absolute temperature ratio, 
tw/ta = 10; and (2) Bi = 2 × 10 -3, hw/h = 20, ks/kw = 20, 
H/6 s = 100, 6s/6 f = 2, 6w/6s = 1, ~w = 0.6, Ef = 0.8, and the 
absolute temperature ratio t w / t  a = 10. He found that for 
problem 1 the heat transfer rate through the extended surface 
assembly using the 1-D model of Equations 4 and 50 is 2 percent 
lower than that from the more exact 2-D representation. This 
low 2 percent reduction is understandable since we found 
ql = 0.92 (a high value) from Equation 4. For problem 2, he 
found that heat transfer rate from the 1-D model is 27 percent 
higher than that from the more exact 2-D representation. For 
this case, we can calculate r/~ = 0.20 from Equation 4, which is 
quite low, resulting in a greater difference between the 1-D and 
2-D solutions. In contrast, it should be emphasized that Heggs 
and Stones (1980) found that the effect of the fin base 
temperature depression is only to increase the total heat transfer 
rate through the extended surface assembly. This may be 
attributed to their different modeling and without radiation 
heat transfer on the wall and fin surfaces. 

Look (1989) analyzed the 2-D straight fin of rectangular 
profile with cosine fin base temperature to account for the effect 
of the fin base temperature depression. He employed heat 
balance integral approaches to solve Equation 9. Although no 
specific results are presented, he concluded that when Bi << 1, 
the effect of nonuniform fin base temperature is negligible. 

Conclusions 
The objective of this paper was to assess the accuracy of the 
conventional 1-D fin efficiency formula when the following 
usually neglected effects are included in the analysis : the effect 
of 2-D heat flow (thick fin), temperature dependent fin thermal 
conductivity, nonuniform heat transfer coefficient over the fin 
surface, nonuniform temperature of the ambient fluid, finite 
longitudinal heat conduction in the fin in the fluid flow 
direction, and temperature depression at the fin base. The 
following are specific conclusions: 

(1) The ideal 1-D fin efficiency of Equation 5 is accurate to 
within 0.3 percent when compared with the exact 2-D 
expression of Equation 14 with Bi* = 0 for ~/i > 80 percent. 
When Bi is the order of 1 or less (~/i < 80 percent), the 
modified 1-D fin efficiency of Equation 21 with Bi* = 0 
has a less than 1 percent error compared with the exact 2-D 
expression of Equation 14 and is recommended over 
Equation 5. 

(2) Considering a linear variation of the fin thermal 
conductivity up to 10 percent, the actual fin efficiency could 
be higher or lower compared with that by Equation 5 
depending on whether the fin is being cooled or heated. 
However, the difference is within 2 percent for r/i > 80 
percent. For  a composite fin, the low conductivity layer 
plays a dominant role in the heat transfer mechanism ; the 
reduction of heat flow by the so-called insulating layer due 
to frosting can be significant, about 8 percent at a typical 
~/i of 96 percent. 

(3) The idealization of uniform heat transfer coefficient may 
lead to gross errors in analyzing extended surface heat 
transfer. For  a particular linear variation of Equation 25, 
the actual fin efficiency will be lower by 6, 16, and 24 
percent compared with that calculated from Equation 5 
considering heat transfer coefficient, h,,, as constant for ~/~ 
of 90, 80, and 70 percent; here the mean value of the 
nonuniform heat transfer coefficient, h,,, is equal to the 
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value for the uni form case. In reality, since h for a given 
heat  t ransfer  surface is de termined  experimental ly  based 
on  r h for cons tan t  h, the ideal izat ion of cons tan t  h for 
de termining  r/i for the design of the exchanger  would not  
in t roduce a significant error  in r/i, par t icular ly  for high r h 
such as rh > 80 percent.  However ,  one needs to be aware  
of the impact  of nonun i fo rm h on  r/f if the heat  exchanger  
test condi t ions  and  design condi t ions  are significantly 
different. 

(4) N o n u n i f o r m  ambien t  t empera ture  has  less than  a 1 percent  
effect on  the fin efficiency for r h > 60 percent  and  hence 
can be neglected. 

(5) The longi tudinal  heat  conduc t ion  effect on  fin efficiency is 
less than  1 percent  for r/i > 10 percent  and  hence can be 
neglected. 

(6) The fin base tempera ture  depress ion increases the total  heat  
flow rate t h rough  the extended surface compared  with tha t  
with no  fin base t empera tu re  depression,  and  hence 
neglecting this effect provides a conservat ive app roach  for 
the extended surface heat  transfer.  

References  

Anderson, D. A., Tannehill, J. C. and Pletcher, R. H. 1984. 
Computational Fluid Mechanics and Heat Transfer. Hemisphere, 
New York 

Aparecido, J. B. and Cotta, R. M. 1990. Improved one-dimensional 
fin solutions. Heat Trans. Eng. 11(1), 49-59 

Avrami, M. and Little, J. B. 1942. Diffusion of heat through a 
rectangular bar and the cooling and insulating effects of fins. I. The 
steady state. J. Applied Phys. 13, 255-259 

Aziz, A. 1977. Perturbation solution for convective fin with internal 
heat generation and temperature-dependent thermal conductivity. 
Int. J. Heat Mass Transfer 20, 1253-1255 

Aziz, A. and Enamul Huq, S. M. 1975. Perturbation solution for 
convective fin with variable thermal conductivity. J. Heat Transfer 
97, 300-301 

Barrow, H. 1985. A note on frosting of heat pump evaporator surface. 
Heat Recovery Systems 5(3), 195-201 

Barrow, H., Mistry, J. and Clayton, D. 1986. Numerical and exact 
mathematical analyses of two-dimensional rectangular composite 
fins. Heat Transfer 1986, 2, 367-372 

Chen, S. Y. and Zyskowski, G. L. 1963. Steady-state heat conduction 
in a straight fin with variable film coefficient. A SME Paper 63-HT- 12 

Cumo, M., Lopez, S. and Pinchera, G. C. 1965. Numerical calculation 
of extended surface efficiency. Chem. Engrg. Prog. Syrup. Series 59 
61,225-232 

Epstein, N. and Sandhu, K. 1978. Effect of uniform fouling deposit on 
total efficiency of extended heat transfer surfaces. Heat Transfer 1978, 
4, 397-402 

Fortescue, P. 1957. Some characteristics of reactor gas cooling systems. 
Nucl. Power 2, 188-194 

Ghai, M. L. 1951. Heat transfer in straight fins. Proceedings of General 
Discussion on Heat Transfer, Institution of Mech. Engineers, London, 
UK, 180-182, 203-204 

Ghai, M. L. and Jakob, M. 1950. Local coefficients of heat transfer 
on fins. ASME Paper 50-5-18 

Gardner, K. A. 1945. Efficiency of extended surface. Trans. ASME 67, 
621-631 

Gardner, K. A. 1951. Discussion on paper of M. L. Ghai. Proceedings 
of General Discussion on Heat Transfer, Institution of Mech. 
Engineers, London, UK, 214-218 

Han, L. S. and Lefkowitz, S. G. 1960. Constant cross-section fin 
efficiencies for nonuniform surface heat-transfer coefficients. ASME 
Paper 60-WA-41 

Harris, M. J. and Wilson, J. T. 1961. Heat transfer and fluid flow 
investigation on large scale transverse fins. Proc. of the Syrup. on the 
Use of Secondary Surf.for Heat Transfer with Clean Gases, Institution 
of Mech. Engineers, London, UK, 115-120 

Heggs, P. J., Ingham, D. B. and Manzoor, M. 1982. The analysis of 
fin assembly heat transfer by a series truncation method. J. Heat 
Transfer 104, 210-212 

Straight fins of rectangular profile: L. J. Huang and R. K. Shah 

Heggs, P. J. and Stones, P. R. 1980. The effects of dimensions on the 
heat flowrate through extended surfaces. J. Heat Transfer 102, 
180-182 

Hughes, D. F. and Slack, M. R. 1958. A correlation of heat transfer 
for finned fuel elements for carbon dioxide reactors. Proc. 2rid United 
Nations Conf. on Peaceful Uses of Atomic Energy 7, 717-722 

Hung, H. M. and Appl, F. C. 1967. Heat transfer of thin fins with 
temperature dependent thermal properties and internal heat 
generation. J. Heat Transfer 89, 155-162 

Irey, R. K. 1968. Errors in the one-dimensional fin solution. J. Heat 
Transfer 90, 175-176 

Jones, T. V. and Russell, C. M. B. 1978. Heat transfer distribution on 
annular fins. AIAA-ASME Thermophysics and Heat Transfer Conf., 
Palo Alto, CA, USA 

Jones, T. V. and Russell, C. M. B. 1980. Efficiency of rectangular fins. 
ASME Paper 80-HT-121 

Keller, H. H. and Somers, E. V. 1959. Heat transfer from an annular 
fin of constant thickness. J. Heat Transfer 81, 151-156 

Kern, D. and Kraus, A. D. 1972. Extended Surface Heat Transfer. 
McGraw-Hill, New York 

Klett, D. E. and McCulloch, J. W. 1972. The effect of thermal 
conductivity and base-temperature depression on fin effectiveness. J. 
Heat Transfer 94, 333-334 

Kraus, A. D. 1982. Analysis and Evaluation of Extended Surface Thermal 
Systems. Hemisphere, New York 

Kraus, A. D., Snider, A. D. and Doly, L. F. 1978. An efficient algorithm 
for evaluating average of extended surface. J. Heat Transfer 100, 
288-293 

Lau, W. and Tan, C. W. 1973. Errors in the one-dimensional heat 
transfer analysis in straight and annular fins. J. Heat Transfer 95, 
549-551 

Look, Jr., D. C. 1988. Two-dimensional fin performance: Bi (top 
surface) >/Bi (bottom surface). J. Heat Transfer 110, 780-782 

Look, Jr., D. C. 1989. Two-dimensional fin with non-constant root 
temperature. Int. J. Heat Mass Transfer 32, 977-980 

Ma, S. W., Bebbahani, A. I. and Tsuei, Y. G. 1991. Two-dimensional 
rectangular fin with variable heat transfer coefficient. Int. J. Heat 
Mass Transfer 34, 79-85 

Manzoor, M. 1984. Heat flow through extended surface heat 
exchangers. Lecture Note in Engineering (C. A. Brebbia, S. A. Orszag, 
Eds.), Springer-Verlag, New York 

Mikhailov, M. D. and Ozi~ik, M. N. 1984. Unified Analysis and 
Solutions of Heat and Mass Diffusion. John Wiley, New York 

Ozi~ik, M. N. 1985. Heat Transfer--A Basic Approach. McGraw-Hill, 
New York 

Saboya, F. E. M. and Sparrow, E. M. 1976. Experiments on a three-row 
fin and tube heat exchanger. J. Heat Transfer 98, 520-522 

Schenck, H. 1960. Heat Transfer Engineering. Longman, White Plains, 
NY 

Shah, R. K. 1971. Temperature effectiveness of multiple sandwich 
rectangular plate-fin surface. J. Heat Transfer 93, 471-473 

Shah, R. K. 1985. Compact heat exchangers. Handbook of Heat 
Transfer Applications (W. M. Rohsenow, J. P. Hartnett and E. N. 
Ganir, Eds.). McGraw-Hill, New York, 174-312 

Snider, A. D. and Kraus, A. D. 1982. Correcting for the variability of 
the heat transfer coefficient in extended surface analysis. Heat 
Transfer 1982, 6, 239-243 

Sparrow, E. M. and Hennecke, D. K. 1970. Temperature depression 
at the base of a fin. J. Heat Transfer 92, 204-206 

Sparrow, E. M. and Lee, L. 1975. Effects of fin base-temperature 
depression in a multifin array. J. Heat Transfer 97, 463-465 

Stachiewicz, J. W. and McKay, A. R. 1963. Heat transfer coefficients 
on finned surfaces. Trans. EIC 1, B-9 

Steir, A. A. 1976. The heat balance integral in steady-state conduction. 
J. Heat Transfer 98, 466-470 

Stynes, S. K. and Myers, J. E. 1964. Transport from extended surfaces. 
AIChE J. 10, 437-442 

Suryanarayana, N. V. 1977. Two-dimensional effects on heat transfer 
rates from an array of straight fins. J. Heat Transfer 99, 129-132 

Onal, H. C. 1985. Determination of the temperature distribution in an 
extended surface with a non-uniform heat transfer coefficient. Int. J. 
Heat Mass Transfer 2,8, 2279-2284 

t]nal, H. C. 1987. Temperature distributions in fins with uniform and 
non-uniform heat generation and non-uniform heat transfer 
coefficient. Int. J. Heat Mass Transfer 30, 1465-1477 

Int. J. Heat and Fluid Flow, Vol. 13, No. 3, September 1992 293 


